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Introduction and Results

In the paper [5] of the author a convergence theorem for 0-cochain of affinoid functions was
proved, which among others gives a proof other than the one of Lütkebohmert for the theorem
of “Thullen-Remmert-Stein” about the continuability of a holomorphic set in an exception
set of the same dimension. L. Gerritzen told the author that the aforementioned convergence
theorem is a corollary of a yet to be proved vanishing theorem for the cohomology H1(X, Ǒ)
which can be understood. Denote H1

ρ(U) the first cohomology group of the complex C•ρ(U)
which associates with an (finite, affinoid) open cover of an affinoid space X the functions of
norm < ρ on respective intersections. In this work we show the following:

Theorem 1. For any ρ ∈ R∗+ and any open cover U of unit polycylinder En, the group
H1
ρ(U) vanishes. In particular the same applies to H1

ρ(En)1.

Theorem 2. Let X be a smooth (absolutely regular) affinoid space over k. Then there is a
constant c ∈ k with 0 < |c| ≤ 1 so that

c ·H1
ρ(X) = 0

for all ρ.

The example V (Y 2 + X3 + aX) where |a| < 1 of “deformed” cubic cuspidal shows (S.
Bosch) that one cannot choose c = 1 in general and suggests that this phenomenon has
something to do with the singularity on the affine model2. In fact we have3,

Theorem 2’. Let X be an affinoid space over an algebraically closed field k with smooth

affine model X̃. Then

H1
ρ(X) = H1

1 (X) = 0.

1Translator’s note: perhaps the author meant the following. Let us consider the sheaf of functions of norm
< ρ on En, then by general nonsense in topos theory we know that H1 of this sheaf can be computed as
colimit of Čech H1 of open covers. Therefore by the statement before, we see that H1 of this sheaf vanishes
also. In fact, according to (reference de Jong, Van der Put) the sheaf cohomology on a rigid space can always
be computed by Čech cohomology

2Translator’s note: maybe the author was saying the non-vanishing of H1
ρ(X) is due to the affine model

being singular.
3Author’s note: in a lecture Sir Gerritzen conjectured that Theorem 2 is equivalent to Theorem 2’.
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With a Riemannian removability argument, i.e., ball theorem (Kugelsatz) the prerequisite
“smooth” could be slightly weakened to “absolutely normal”. On the other hand it seems
hard to prove the analogue of Theorem 2 for higher cohomology groups. So far the author
has no concrete idea of how to remove the condition of “absolute”. A vanishing theorem for
H2 would be interesting, e.g. if one considers the relation between Picard groups of X and

X̃ under less special conditions as studied in [6], [7].

§ 1. Definitions and Preparations

1. Let X = (X,A, ·) be a rigid space as in [4], so there is an admissible open cover of X by
affinoid subspace, in other words an atlas of X ([8]). We use A to denote the ring of analytic

functions on X, and Å ⊂ A the subring of functions with norm ≤ 1. Let U be an open cover
of X, denote C•(U) the A-complex associated with (A, ·). For ρ ∈ R∗+, let4

Cq
ρ(U) :=

{
(fi)(i)

∣∣∣ (fi)(i) ∈ Cq(U), |(fi)(i)| < ρ
}
,

where | | denotes the maximum of spectral norm. C•ρ(U) is a Å-complex. In the case of

ρ = 1 we denote it by C•(U , Ǎ). We use the usual notation Z•ρ(U) (resp. B•ρ(U)) to denote the
subcomplex of cocycles (resp. coboundaries), and denote their quotient by H•ρ(U). Finally
we set

H•ρ(X) := lim−→
U
H•ρ(U)

where the limit is taking over the system of all open covers.

2. From now on X will be an affinoid. We denote U ∨B5 the canonical common refinement
of two open covers and write U � B if U is finer than B. We use B∩U to denote the induced
open cover of a subspace U ⊂ X.

Suppose for ν = 1, . . . , n we have

fν ∈ A, εν ≤ ε′ν ∈
√
|k∗|,

then we set

U(f, ε, ε′) :=
n∨
ν=1

({|fν | ≤ ε′ν} , {|fν | ≥ εν}).

If ε = ε′ these form the Laurent open cover ([11]). Given f1, . . . , fn ∈ A without common

zero and 1 ≤ ρ ∈
√
|k∗|, then call

Bρ := (Vν,ρ)(ν=1,...,n), Vν,ρ := {|f1|, . . . , |fn| ≤ ρ|fν |}

4Translator’s note: the author used Cq(U) but the translator has changed the notation to indicate the
relevance of ρ.

5Translator’s note: due to the translator’s mistake, the curly V in the original paper (standing for an
open cover) has been wrongly denoted as curly B here. The reader should be aware that from now on there
will be plenty occasions where the elements of curly B are called Vi.
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the standard rational cover of X of f 6 with radius ρ. More generally given B = (Vi)(i) any
rational open cover of X, i.e. an open cover with rational subdomains

Vi =
{∣∣∣f (i)

1

∣∣∣, . . . , ∣∣f (i)
mi

∣∣ ≤ |gi|} ,
then for 1 ≤ ρ ∈

√
|k∗| we set

Vi,ρ :=
{∣∣∣f (i)

1

∣∣∣, . . . , ∣∣f (i)
mi

∣∣ ≤ ρ|gi|
}
.

When ρ > 1 we call Bρ := (Vi,ρ)(i) an inflated open cover of X. The inflated open covers will
be used for two essential reductions.

We treat the first one immediately. We recall the following

Satz 1. 7[11],[12]8 Let B be an open cover of X with special subdomains

Vi,n =
{∣∣∣f (i)

j

∣∣∣nj ≤ 1, j = 1, . . . ,mi

}
, n ∈ {−1, 1}mi

and denote the family f
(i)
j by f . Then the Laurent cover U = U(f, 1, 1) has the property that

for any U ∈ U the open cover B ∩ U is formal.

From this Satz one obtains

Satz 2. Let Bρ = (Vi,n,ρ)(i) be an inflated open cover of X. Then there is an open cover U
of X with special subdomains, such that for any U ∈ U there exists a formal open cover M
of U so that

B ∩ U �M� Bρ ∩ U

Proof. Let

Vi =
{∣∣∣f (i)

1

∣∣∣, . . . , ∣∣f (i)
mi

∣∣ ≤ |gi|} .
We may choose m ∈ N so big such that

Vi,ρ ∩
{
|gi| ≤ ρ−m

}
= ∅, |gi| ≤ ρm

for all i and set

Pi,−m :=
{
|gi| ≤ ρ−m

}
, Pi,µ :=

{
ρµ−1 ≤ |gi| ≤ ρµ

}
for−m < µ ≤ m,

Pi = (Pi,µ)(|µ|≤m), P :=
∨
i

Pi.

Let P ∈ P indexed as (µi)(i), then we set

Wi,P :=

{
P ∩

{∣∣∣f (i)
1

∣∣∣, . . . , ∣∣∣f (i)
mi

∣∣∣ ≤ ρµi
}

for µi > −m;

∅ otherwise.

6Translator’s note: the author used f without underline, here we add an underline to indicate it is
associated with an n-tuple of functions (without common zero). There are also other typos in this article,
we will just make the reasonable correction without note. The reader is encouraged to read with a grain of
salt.

7Translator’s note: perhaps we should use the word Proposition instead of Satz as we are translating. But
the translator decided not to do that for some reason.

8Translator’s notice: the translator was not able to find any discussion of formal open cover in [12]. In [11,
Page 259] formal open cover of an affinoid is introduced.
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For all we have

Vi ∩ P ⊂ Wi,P ⊂ Vi,ρ ∩ P,

in particular MP := (Wi,P )(i) is an open cover of P with special subdomains. According
to Satz 1, there is a Laurent cover LP of X such that for any L ∈ LP ∩ P the open cover
MP ∩ L is formal. Finally one can set

U := P ∨ ( ∨
P∈P
LP )

and for U = P ∩ (. . .) ∈ U we set M :=MP ∩ U . �

3. We formulate another important property of inflated covers in

Satz 3. Let Uε be an inflated open cover of an affinoid space Y and Φ : Y → X a finite
morphism. Then there is an open cover M of X with Φ−1(M)′ � Uε.

We denote by B′ the refinement of B by decomposing elements of B into its connected
components.

Proof. (c.f. [5, Satz 4.4]) We do induction in n, where U = (Uν)(ν=1,...,n) with trivial beginning
n = 1. Assuming it for n− 1 with n ≥ 2, let

Un = {|f1|, . . . , |fm−1| ≤ |fm|} .

Let ρ, σ ∈
√
|k∗| with σ > ρ > 1 and σ · ρ ≤ ε. Then there is a B with

Vµ := {|f1|, . . . , |fm−1|, σ · |fm| ≤ ρ|fµ|} , µ = 1, . . . ,m− 1

Vm := {|f1|, . . . , |fm−1| ≤ ρ · σ · |fm|}

a rational standard open cover with radius > 1. Now by [5, Satz 4.2] there is an open cover
M = (Wi)(i) of X with Φ−1(M)′ � B. We have

Vm ⊂ Un,ε, Vµ ∩ Un = ∅, µ = 1, . . . ,m− 1.

Let Φ−1(Wi)j be the connected component of Φ−1(Wi), so we can choose a refining map
µ(·, ·) with Φ−1(Wi)j ⊂ Vµ(i,j). For µ(i, j) < m the induction hypotheses can be applied to

U ∩ Φ−1(Wi)j, Φ−1(Wi)j → Wi.

Let Mi,j be a corresponding open cover of Wi, then we set

Mi := ∨
µ(i,j)<m

Mi,j.

The open cover of X formed by all elements of all Mi is what we are looking for.9 �

9Translator’s note: we need to distinguish two cases depending on whether there is an index i such that
for all j we have µ(i, j) = m. If no such an i exists, then we are done. Otherwise we just add in Wi.
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4. Finally we note a result of Kiehl ([10, proof of Satzes 1.12 and conclusion]), which is
inevitable for the proof of Theorem 2.

Satz 4. Let X be a smooth affinoid space. Then there is an atlas of X whose members are
irreducible subdomains (Y,B) with the following property: for any y ∈ Y there exists a finite
morphism:

φ : Y → En = (MaxT, T ), n = dimY,

and an element b ∈ B̊, whose minimal polynomial Ω ∈ T̊ [Z] has discriminant f with
f(φ(y)) 6= 0 and so that

Tf [Z]/(Ω)
∼−→ Bφ∗(f).

Remark 1. Specifically for ε ∈
√
|k∗|

Y|φ∗(f)|≥ε → V (Ω) ∩ En+1
|f |≥ε.

The analogue for affine spaces over an arbitrary ground field κ (i.e. space SpecA, where
A is a κ-algebra of finite type) might also be true. We restrict ourselves to the case which is
required later by the proof of Theorem , where κ is algebraically closed.

Satz 4’. Let Z = (Z,B) be an irreducible smooth affine space over κ. Then for every point
z0 ∈ Z there exists a finite morphism

φ : Z → Ad, d = dimZ,

so that the fiber φ−1(φ(z0)) is reduced. Specifically there is an element b ∈ B, whose minimal
polynomial Ω ∈ κ[X][W ] with respect to

φ∗ = κ[X1, . . . , Xd]→ B

has discriminant f with f(φ(z0)) 6= 0 and

κ[X]f [W ]/(Ω)
∼−→ Bφ∗(f).

Hilfssatz 5. Let (Z,B) be a given reduced closed subspace of dimension ≤ d in Ad+n
κ =

Spec(κ[X1, . . . , Xd+n]) containing the “origin” z0, suppose n ≥ 1 and d1, . . . , dn+d−1 ∈ N+.
For any a ∈ κd+n−1 we consider projection (depending on a)

π : Z → Ad+n−1,

given by

π∗(Xν) := (Xν − aν ·Xdν
d+n)|Z , ν = 1, . . . , d+ n− 1.

If π is finite, denote Y = (Y,A) the image of Z (with its reduced structure) and φ : Z → Y
the morphism induced by π. Then we have

(α) There is a (Zariski-) open subset ∅ 6= U ⊂ Ad+n−1so that for any a ∈ U the morphism
π is finite.

(β) If dimZ < d or n > 1, then there is an open subset ∅ 6= U ⊂ Ad+n−1 such that for
any a ∈ U we have φ−1(φ(z0)) = {z0}.

(γ) If all dν > 1, π is finite, φ−1(φ(z0)) = {z0} and the images of X1, . . . , Xd form a
regular system of parameters of Bz0, then the images of X1, . . . , Xd in Aφ(z0) also
form a regular system of parameters. In particular, Y is also regular at φ(z0) and

Âφ(z0) ≈ B̂z0.
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(δ) If n = d1 = . . . = dd+n−1 = 1, Z is irreducible of dimension d and regular at z0.
Suppose f ∈ κ[X1, . . . , Xd+1] is a prime element precisely defining Z such that

∂f

∂Xν

(z0) = δν,d+1, 1, . . . , d+ 1,

then there is an open subset ∅ 6= U ⊂ Ad such that for such a ∈ U the fiber π−1(π(z0))
is reduced and Z is regular at all of its points10.

Both of Satz 4’ and Hilfssatz 5 are classical algebraic geometry/commutative algebra, let
us not translate the proof here.

§ 2. Proof of Theorems

1. In this section, let X = (X,A) be an affinoid space. In individual subsections there will
be more conditions on it.

From Tate’s proof of acyclicity for formal open covers ([12, Lemma 8.4]) we get

Satz 5. For each formal open cover U of X and ρ ∈ R∗+, the supplement complex C•ρ(U)
given by Aρ := {a | |a| < ρ} is acyclic.

Proof. Following the notations in [12, page 274–275], here we also get a resolution

0→ C•ρ(P)
α−→ C•ρ(P)→ C•ρ(U)→ 0,

because 1− f · S is also non-zero divisor in Ã[S], hence the homotopy to 1− f · S of Aρ〈S〉
is isometric with respect to ||, and secondly after [2, Satz 5.1]

Aρ〈Sσ〉 → (A〈f−1
σ 〉)ρ

is surjective. Finally the null-homotopy given by Tate

s : C•(P)→ C•−1(P)

not from C•δ (P), how to get directly from the defining formula sees, if one still observes, that∣∣∣∑ a(ν)Sν
∣∣∣ = max

∣∣a(ν)
∣∣.

�

The following argument allows us again to descend an inflated cover to “any” covers.

Satz 6. Let ρ ∈ R∗>0, q ∈ N+ be arbitrary. If there is a c ∈ k with 0 < |c| ≤ 1, so that for
any inflated open cover Uε of X and any f ∈ Zq

ρ(Uε) there exists an open cover B � Uε, such
that

c · f |B ∈ Bq
ρ(B),

then

c ·Hq
ρ(X) = 0.

10Translator’s note: perhaps the author meant regular at all of π−1(π(z0)).
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Proof. The system of all rational covers is cofinal due to the main result of [8]. Let U be an

arbitrary open cover of X. For 1 < ε ∈
√
|k∗| consider the diagram

Cq−1(Uε)

βq−1

��

∂q−1
ε
// Zq(Uε)

βq

��

Cq−1(U)
∂q−1

// Zq(U)

where the vertical arrows are restrictions and all A-modules are equipped with the canonical
Banach topology. Since each Ui is a Weierstrass domain in Ui,ε, β

q−1 has dense image; as
∂q−1
ε and ∂q−1 are open, therefore βq also has dense image. Now for any f ∈ Zq

ρ(U), there is

a g ∈ Cq−1
ρ (U) and h ∈ Zq(Uε) with

f − ∂q−1(g) = βq(h).

By decreasing ε > 1 we can even assume that h ∈ Zq
ρ(Uε), see [5, Hilssatz 4.3]11. Therefore

it suffices to show that c · h becomes zero after restricting to a refinement of Uε. This is the
case by our condition. �

2. We now show our first “substantial” result.

Satz 7. Let X = En be the unit polycylinder, then for each Laurent cover U = U(f, 1, 1) of
X we have a short exact sequence

0→ A
ι−→ C0(U)

∂0−→ B1(U) = Z1(U)→ 0.

The homomorphism ι has a left inverse π such that the bijection ∂0|Ker π is an isometry with
respect to | |.

We first show that Theorem 1 follows from this Satz. According to Satz 1 and Satz 7, we
see that H1

ρ(U) = 012 for any open cover U of En with special subdomains. Now let B be

some open cover by rational subdomains13 and f ∈ Z1
ρ(B). As in the proof of Satz 6 above,

one can reduce the proof of the claim f ∈ B1
ρ(B) to the case where f is the restriction of

an element f ′ ∈ Z1
ρ(Bε) with some ε > 1. Let U be as in Satz 2 and to U ∈ U one get

a formal open cover M of U with the property in the mentioned Satz. Now Satz 5 gives
f ′|M ∈ B1

ρ(M), hence also

f |B∩U ∈ B1
ρ(B ∩ U).

Because H1
ρ(U) = 0, it follows — c.f. the proof of Hilfssatzes 3 — that f ∈ B1

ρ(B)14. An

almost identical argument settles the case of an arbitrary open cover15 B = (Vi)(i=1,...,s).

11Translator’s note: unfortunately it seems that the reference is not available online. However this state-
ment seems easy to prove anyway. It is crucial that we are considering cochains with norm less than (no “or
equal to”) a fixed real number ρ.

12Translator’s note: here we need the auxiliary Lemma A.1.
13Translator’s note: this is not necessarily a rational cover, at least not from the definition.
14Translator’s note: once again, we need to use the auxiliary Lemma A.1
15Translator’s note: the author should say it is an open cover by affinoid subdomains in order to apply

the Theorem of Gerritzen and Grauert cited.
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Due to [8, Satz 3.6], each Vi is a union of rational subdomains V
(j)
i , j = 1, . . . ,mi of En.

According to previously proved case16, to each (fil)(i,l) ∈ Z1
ρ(B) there exist

(f
(j)
i )(i,j) ∈ C0

ρ((V
(j)
i )

(
i=1,...,r
j=1,...,mi

)
)

with

fil = f
(j)
i − f

(j′)
l over V

(j)
i ∩ V

(j′)
l ,

so that the f
(j)
i , j = 1, . . . ,mi glue to an affinoid function fi on Vi and so that (fi)(i) ∈ C0

ρ(B)
whose coboundary is (fi,j)(i,j).

Proof of Satz 7. Let us denote n = d + 1 > 0, i.e. A = Td〈Y 〉. We can assume that U is

of the form U(ω, ε, ε), where 1 ≥ εµ ∈
√
|k∗| and ωµ ∈ T̊d[Y ], µ = 1, . . . ,m are Weierstrass

polynomials of degree sµ > 017. The projector π is obtained in the following way. Let

U2m := {|ωµ| ≥ εµ, µ = 1, . . . ,m}

and (fi)(i) ∈ C0(U). Then by [5, Satz 2.3] we have a unique decomposition18

f2m|{|ω|=1} = h+
∑
ν<0

rνω
ν ,

where ω :=
∏
ωµ. Finally we define

π((fi)(i)) := h.

By construction π is a contracting projector. We now prove that19∣∣(fi)(i)

∣∣ ≤ ∣∣∂(fi)(i)

∣∣ if h = 0.

By passing to the residue class of Td it suffices to prove the inequality when d = 0, after
a base change of the ground field we can also assume that k is algebraically closed. Let
P = P1(k) with its usual holomorphic structure, and let

U ′ := {εµ ≤ |ωµ| ≤ ∞, µ = 1, . . . ,m}

an affinoid subdomain of P with the Atlas U(ω−1, 1, 1). We have

U ′|ω−1|≥1 ⊂ U2m ⊂ U ′.

Thus f2m naturally has an affinoid continuation f ′ on U ′20 such that f ′(∞) = 0. Then
(fi)(1≤i<2m) and f ′ defines a 0-cochain associated with the open cover (Ui)(1≤i<2m) ∪U ′ of P.
Because

Ui ∩ U ′ = Ui ∩ U2m for i < 2m

it suffices to show:

16Translator’s note: the previously proved case exactly is open cover by rational subdomains.
17Translator’s note: the author forgot to mention that the ωµ’s should have norm 1.
18Translator’s note: since the reference is not available online, the translator proved the related statement

in the appendix, see Lemma A.2.
19Translator’s note: the opposite inequality is obvious.
20Translator’s note: the translator does not understand the author’s expression. Fortunately, the trans-

lator has a simple argument to show that f2m can be continued to U ′, see Lemma A.3.
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Satz 8. Let k be algebraically closed and (Ui)(1≤i≤n) be an open cover of P. Then for any j0

and x0 ∈ Uj0, then projector p with

p((fi)(i)) := fj0(x0)

splits the following exact sequence

0 // k // C0(U)
∂0
//

p

zz

B1(U) // 0,

and ∂|Ker p is an isometry.

Proof. We may assume that all Ui are connected and n > 1. Without loss of generality let
j0 = n, x0 =∞. After renumbering there is an m with 1 ≤ m < n such that

∞ ∈ Ui ⇐⇒ m < i ≤ n.

Let ρ ∈ |k∗| be big enough, so that
m⋃
i=1

Ui ⊂ {|Y | ≤ ρ} =: K, P\Ǩ ⊂
m⋂

i=m+1

Ui.

Following the notations in [5, § 2.3] for 1 ≤ i ≤ m set

Ui = D(i)\
mi⋃
l=1

Ď(i,l), mi ≥ 0. (*)

There is a similar presentation for m < i ≤ n, where Ď(i,l) ⊂ k21 are disjoint “open” discs
and D(i) = P, especially mi > 0. For each i let

fi = hi + fi,−

be the decomposition corresponding to (*), where hi is holomorphic on D(i) and fi,− is
holomorphic on

P\
mi⋃
l=1

Ď(i,l) with fi,−(∞) = 0.

If we set
B := U ∩K, (gi)(i) := (fi)(i)|B,

then by [5, Satz 2.5]22

gi(K,Vi)− = fi,−, |gi(K,Vi)−| ≤
∣∣∂(gi)(i)

∣∣.
After replacing fi by fi − fi,− we can reduce to the case that fi,− = 0. Then it follows from
the condition23 that for j > m- we have fj ∈ k-

|fj| ≤
∣∣∂(fi)(i)

∣∣,
hence we are reduced to the case where fj = 0 for j > m. We then notice that for Ui∩Uj 6= ∅
we have ∣∣(fi − fj)|Ui∩Uj ∣∣ = |(fi − fj)|D(i)∩D(j)|. (**)

21Translator’s note: perhaps by k the author meant A1.
22Translator’s note: this we can see via exploring more on the decomposition mentioned above and the

explicit maximal principle. One just need to be careful and check the inequality case by case.
23Translator’s note: the author perhaps was referring to the condition that fn = 0.
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Now to every maximal element D(ν) among D(j) with j ≤ m regarding “⊂” there is a µ > m
with Uν ∩ Uµ 6= ∅, so that (**) implies that |fν | ≤

∣∣∂(fi)(i)

∣∣. Finally applying [5, Hilfssatz
2.4]24 to every connected component of

Z =
m⋃
j=1

Uj

and notice (**) we get that

max
1≤j≤m

|fj| ≤
∣∣∂(fi)(i)

∣∣.
�

�

Remark 2. The proof of Satz 7 naturally generalizes to deduce that for each open cover
U = U(ω, ε, ε′) with ε′ ≤ 1 of a reduced affinoid space X × E1 the group H1

ρ(U) vanishes.

3. For the convenience of the reader we formulate in advance

Hilfssatz 9. Let X be a reduced affinoid space with an open cover W = (Wj)(j∈J). If there
is b ∈ k∗ with |b| ≤ 1, so that to every inflated open cover Uε of X and every f ∈ Z1

ρ(Uε)(
ρ ∈ R∗+

)
, there exists an open cover Bj of Wj with

Bj � U ∩Wj, b · f |Bj ∈ B1
ρ(Bj) for j ∈ J.

Then there is c ∈ k∗ with |c| ≤ 1 and

c ·H1
ρ(X) = 0

(Here c does not depend on ρ, if this applies to b.25)

Proof. According to Satz 6 it suffices to show that c can be chosen that for an open cover B
of X such that B � Uε we have c · f |B ∈ B1

ρ(B). We reduce to the case where Bj is of the
form B ∩Wj for some open cover B � Uε of X. To that end, for ∅ 6= I ⊂ J let

WI :=
⋂
j∈I

Wj, BI :=
∨
j∈I

(Bj ∩WI).

The family B whose elements consists of all of elements of BI is an open cover of X with

B � Uε, B ∩Wj � Bj for j ∈ J.
Now let (Bj)(j) = (B ∩Wj)(j). According to Banach’s theorem

C0(W)
∂0W−−→ Z1(W)

has a right inverse with norm ≤ |a−1|, where a ∈ k∗ ∩ k̊ is sufficiently small. We show that
one can choose c := ab. We finish the proof in the following. Let f ∈ Z1

ρ(Uε) with

b · f |B∩Wj
= ∂0(g

(j)
i )(i)

24Translator’s note: even without the reference one should be able to finish the rest of the argument easily.
In one sentence, we just keep trying with maximal principle and ultra-triangle inequality.

25Translator’s note: perhaps the author meant that c can be defined in terms of b without involving ρ as
long as the b satisfies the condition above. But as one can see the condition intrinsically involves ρ.



THE FIRST “METRIC” COHOMOLOGY GROUPS . . . 11

where (g
(j)
i )(i) ∈ C0

ρ(B ∩Wj). Then by the way it is defined, we have

g(j,t)|Wj∩Wt∩Vi := g
(j)
i − g

(t)
i

is an element26 (g(j,t))(j,t) ∈ Z1
ρ(W) and hence

a(g(j,t))(j,t) = ∂0
W(gj)(j)

for some (gj)(j) ∈ C0
ρ(W). For (hi)(i) ∈ C0

ρ(B) with

hi|Wj∩Vi := ag
(j)
i − gj27

we have ab · f = ∂0
B(hi)(i). �

Proof of Theorem 2. Due to Hilfssatz 3 we may assume that the atlas satisfying conditions
in Satz 4 is = {X}. Since the Zariski topology on X is Noetherian, it follows from Satz 4
that there are finitely many finite morphisms

Φσ : X → En, σ = 1, . . . , s

as in Satz 4 with elements aσ ∈ Å, minimal polynomials Ωσ and discriminants fσ, so that

s⋂
σ=1

V (φ∗σ(fσ)) = ∅.

Then there is 1 ≥ ε = |b| ∈ |k∗| sufficiently small, so that

W = (Wσ)(σ), Wσ := Φ−1
σ ({|fσ| ≥ ε}),

is an open cover of X. Then for any open cover S of En and any q ≥ 0, σ = 1, . . . , s

φ∗σ(fσ) · Cq
ρ(Φ

−1
σ (S)′) ⊂

∑
0≤ν<deg Ωσ

φ∗σ(Cq
ρ(S)) · aνσ,

c.f. [5, Page 57–58]28. By Theorem 1 and Satz 3, for every f ∈ Z1
ρ(Uε) where Uε is an inflated

cover of X and for every σ there exists an open cover S(σ) of En with Φ−1
σ (S(σ))′ � Uε and

b · f |Φ−1
σ (S(σ))′∩Wσ

∈ B1
ρ(Φ

−1
σ (S(σ))′ ∩Wσ).

Let

B :=
s∨

σ=1

Φ−1
σ (S(σ))′,

then for all σ we have

b · f |B∩Wσ ∈ B1
ρ(B ∩Wσ).

The assumption of Hilfssatzes 3 are thus verified. �

26Translator’s note: observe that the function defined above glue to a function over Wj ∩Wt
27Translator’s note: observe again that these functions glue.
28Translator’s note: once again, the translator has to work this out himself, see Lemma A.4
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Proof of Theorem 2’. This proof is largely analogous as above. By arguing with irreducible

components of X we can reduce to the case where X̃29 is irreducible. According to Satz 4’,
we get finitely many finite morphisms

Φσ : X → En, σ = 1, . . . , s;

with elements ãσ ∈ Ã, minimal polynomials Ω̃σ and f̃σ as in Satz 4’, so that

s⋂
σ=1

V (φ̃∗σ(f̃σ)) = ∅.

By a main result of [9], the number of fibres of Φσ and Φ̃σ are the same. With the notations
in the proof of Theorem 2 we can choose b = 1; it follows

f |B∩Wσ ∈ B1
ρ(B ∩Wσ).

By Satz 5 H1
ρ(W) = 0, hence we have f |B ∈ B1

ρ(B).30 �

Appendix A. Translator’s final note

The translator thinks it would be helpful to record some auxiliary lemmata here.

Lemma A.1. Let U and B be two open covers of a site X, let F be a sheaf of abelian groups
on X and let [f ] ∈ Ȟ1(B,F). Suppose that

(1) Ȟ1(U ,F) = 0 and;
(2) for each U ∈ U , we have [f ]|B∩U = 0.

Then we have

[f ] = [0]

in Ȟ1(B,F).

Proof. One may consider the double complex given by refinement of U and B and do a chase
diagram argument.

More concretely (which might be more confusing), let us fix some notations. Suppose [f ]
is represented by fj0j1 ∈ F(Bi0 ∩ Bi1). Then by condition (2), there exist f ij ∈ F(Ui ∩ Bj)
such that

fj0j1 = f ij0 − f
i
j1

over Ui ∩Bj0 ∩Bj1 .

Then we see that gi0i1j := f i0j − f
i1
j glue to gi0i1 ∈ FUi0∩Ui1 which is easily checked to be a

cocycle in Ȟ1(U ,F). Therefore by condition (1) we can get gi ∈ F(Ui) such that

gi0i1 = gi0 − gi1 over Ui0 ∩ Ui1 .

Finally let f̃ ij := f ij − gi ∈ F(Ui ∩ Bj), we just observe that these glue to give sections

fj ∈ F(Bj) whose Čech differential is exactly fj0j1 ∈ F(Bj0 ∩Bj1). �

29Translator’s note: it seems that by X̃ the author meant the smooth reduction of X. However, the

translator thinks the argument will be neater if one think of X̃ as an affine smooth formal model of X.

Therefore, from now on, we treat X̃ as an affine smooth formal model of X.
30Translator’s note: the author has implicitly used auxiliary Lemma A.1 here.
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Lemma A.2. Let n = d + 1. Let ω ∈ T̊d〈Y 〉 be a norm 1 Weierstrass polynomial of degree
s > 0. Then every element f ∈ Tn〈S〉/(1− ω · S) admits a unique decomposition

f = h+
∑
ν>0

rνS
ν mod (1− ω · S),

where h ∈ Tn and all the rν ∈ Td[Y ] are of degree < s. Moreover we have the following
inequality between the norms:

|h| ≤ |f |.

Proof. This follows from Weierstrass division, c.f. Theorem 8 in Bosch’s Lectures on Formal
and Rigid Geometry. Details to be added. �

Lemma A.3. In the situation of Satz 7, we can analytically continue f2m over U ′.

Proof. Over U ′|ω|≥1, we see that f2m =
∑

ν<0 rνω
ν naturally converges to an analytic function.

We also observe that, since ω ∈ K̊[Y ] is a norm 1 Weierstrass polynomial, |ω| ≤ 1 ⇐⇒
|Y | ≤ 1. Therefore we see that U ′|ω|≤1 = U ′|Y |≤1, and f2m is already given there. On the

overlap, namely U ′|ω|=1, these two functions coincide by our condition. �

Lemma A.4. Let A be an irreducible n-dimensional affinoid algebra over a non-archimedean
field K. Assume there is a finite morphism Tn → A and an element a ∈ A◦ with minimal
polynomial Ω ∈ T ◦n [X] of degree d whose discriminant is f ∈ T ◦n such that

Tn[x]/(Ω)[f−1] = A[f−1]. (***)

Then for every affinoid subdomain Sp(B) ⊂ Sp(Tn) we have that

f · (A⊗̂TnB)◦ ⊂
∑

0≤ν<d

B◦ · aν .

Proof. Step 1: we first prove this when n = 0. In this case, due to the fact thatOK̄∩K = OK ,
we can assume that K is algebraically closed. Let us reset the situation. So let L =

∏d
i=1 Ki

be a finite K-algebra where all of Ki’s are isomorphic to K. Let y = (yi) ∈ OL =
∏d

i=1OKi .
Then the minimal polynomial Ω of y over K is given by

Ω =
d∏
i=1

(x− yi).

To make the problem less trivial, let us assume that the discriminant of Ω:

f =
∏
i 6=j

(yi − yj) 6= 0.

So the condition *** translated to that L = K[x]/(Ω). Finally let α = (αi) ∈ OL =∏d
i=1OKi , then we know that α · f =

∑
0≤ν<d βν · yν for some βi ∈ K. We need to show that

in this case, βi ∈ OK . To that end, we simply observe that we have a set of equations

M :=


1 y1 y2

1 · · · yd−1
1

1 y2 y2
2 · · · yd−1

2
...

...
...

. . .
...

1 yd y2
d · · · yd−1

d

 ·

β0

β1
...

βd−1

 =


α1 · f
α2 · f

...
αd · f


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Since f = (detM)2 and M,Mad has coefficients in OK where Mad is the adjugate matrix of
M , we see that βi’s are in OK .

Step 2: now we have to use Riemannsche Hebbarkeitssatz. Let α ∈ (A⊗̂TnB)◦, then due
to condition *** we see that

f · α =
∑

0≤ν<d

βi · aν over Sp(A⊗̂TnB)\V (f)

for some βi ∈ B[f−1]. By previous case we know that βi remains norm ≤ 1 on Sp(B)\V (f).
By Riemannsche Hebbarkeitssatz we know that βi ∈ B◦ which is what we want to show. �

Acknowledgement. The translator would like to express his gratitude to his advisor Jo-
han de Jong and his friend Nan Ge for very helpful conversation about German grammar
and math concerning the original paper. This translation can never be done without their
warming encouragement.
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